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SUMMARY OF RESEARCH ACCOMPLISHMENTS

This research has developed a solution procedure for a practical, new combinatorial

optimization problem, namely, problem (*) of page 4 of this technical report. The solution

procedure also represents a new approach to combinatorial problems.

Problem (*) is a model for certain surveillance maintenance problems, and has not

previously appeared in the literature of optimization or industrial engineering. Therefore, this

research is bringing this important problem to the attention of researchers and specialists in the

field of optimization and industrial engineering.

Our procedure for solving problem (*) is a heuristic that produces good quality,

approximate solutions. This heuristic is designed to utilize solution guesses from the user, and

incorporate new fast heuristics for the standard set-covering problem. Hence, this procedure has

the potential to "evolve" and "develop", as more computational experiments are performed, and

researchers become aware of problem (*).

This heuristic introduces a new approach to combinatorial problems. Combinations of

sensor mechanisms are "lined up" as (binary coded) integers, and then a discrete line search (that

is, a line search on integers only) is performed. Hence, a discrete optimization problem is

transformed in a way that allows basic procedures of nonlinear programming to be applied. This

should be a useful approach for a host of NP-complete combinatorial problems (the knapsack

problem, for instance).

Finally, the cubical subdivision of the set S described in Appendix I of this report should

have interesting implications for research on surveillance sensors.
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SECTION 1

INTRODUCTION

This is the final report for research contract DASG60-90-C-0142 with the United States

Army Strategic Defense Command, Huntsville, Alabama. This is also the third of three technical

reports on the research contract. The first and second preliminary technical reports are included

in this final report as Appendix I and Appendix II respectively.

The subject of this research contract is the problem labeled (*) below:

(*)Given: S, a subset of the 3-dimensional space, R3; subsets Si ,...m, j=l ...,n, that cover

S in the sense that S is the union of all the Si,'s; two numbers ti, and ci that will be

interpreted as "time" and "cost" respectively. Required: To determine an optimal collection

of the S,,'s that cover S, with no more than one Sij for each i, and optimality defined in

terms of minimizing max{tj : Sij is in the collection) or minimizing the total cost of the

Sq's in the collection.

This set-covering problem shall be referred to as problem (*). Problem (*) is a

representation for a class of surveillance maintenance problems including the problem of restoring

surveillance coverage for a system of surveillance sensor mechanisms after a sensor mechanism

(in the system) fails. The set S represents the space under surveillance; each subset Sij represents

the portion of S covered by the i-th surveillance sensor mechanism functioning in its j-th optional

deployment/positioning; each c,, represents the cost of the j-th deployment of the i-th sensor

mechanism; tzj represents the time required for the i-th sensor mechanism to be placed in its j-th
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optional deployment. Selecting a minimum-cost set of Si,'s covering S corresponds to restoring

surveillance coverage at minimum cost, whereas selecting a minimax-time set of Si's covering

S corresponds to restoring surveillance coverage within the shortest time possible.

For any procedure to solve problem (*), it is necessary to be able to determine whether

a given selection of the Si,'s define a cover for S. This question is the subject of our first

preliminary technical report. In addressing this question, we find information about the sizes of

potential intruders (into S) to be very helpful. This information allows us to avoid putting

stringent conditions on Si, or S. Section 2 of this report gives a summary of the preliminary

technical report.

Also in section 2 of this report, our solution procedure for problem (*) is summarized.

Appendix II contains a detailed description of this procedure. Partly because problem (*) is yet

to appear in established literature, our procedure for solving problem (*) is not a variant of any

existing procedures. Section 3 of this report evaluates certain computational features of this

procedure.

Sections 3 and 4 of this report were not included in the preliminary technical reports.

Using various test problems, section 3 contains information on the quality of solutions, and

discusses some design choices. The computational complexity of the procedure is already

estimated in Appendix II as o(S'm21og1.32m).

Section 4 describes three extensions of problem (*) as possibilities for further work.

These are resource-constrained extensions, commitment-constrained extensions, and multiple-layer

coverage extensions. Such extensions incorporate a more realistic setting for problem (*).

To close this introduction, a clarification of one terminology that will be encountered
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frequently in this report is in order. Since it is a heuristic, our solution procedure is application-

oriented, and so is the description of it. Hence, sometimes problem (*) is referred to as the

surveillance maintenance problem, even though problem (*) is actually an optimization model

that has the surveillance maintenance problem as its motivation, and one of several possible

applications.

6



SECTION 2

DESCRIPTION OF SOLUTION PROCEDURE

Our solution procedure has been formally described in our first and second preliminary

technical reports, DASG60/90/1 and DASG60/90/2, which are included here as Appendix I and

Appendix II respectively. In this section, we describe our motivation for the results presented

in those preliminary technical reports. Informal summaries of the results are also given.

2.1 Determining Whether S is Covered

Any method for solving problem (*) must include a procedure for checking whether the

set. S is equal to the union of any selection of the Si,'s, that is, whether S is covered by a given

selection of the Sij's. If the set S were a finite set, then it would be a straightforward matter to

do this checking on a digital computer. But, in problem (*), the set S in not finite; it is a 3-

manifold in R3 (that is, a full-dimensional volume in R3). This task of checking whether S is

covered is the subject of our first preliminary technical report.

In the case that S is not a finite set, it may be very difficult or even impossible to check

whether S is covered. To illustrate this point, let us consider two special examples. First,

suppose S and the Si's are rectangles in R'. Figure 2.1 below portrays a possible situation that

may develop. This diagram suggests that the task (checking whether S is covered) is not

impossible in this case, but could involve a great deal of record keeping.

Now suppose S is a rectangle in R , and some of the S i,'s are intersections of circles and
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S. Figure 2.2 below portrays a possible picture in this case. This diagram suggests that it may

be impossible to check whether S is covered, unless further information is brought to bear on the

case.

Sa,

L

Salt
S

Figure 21

SZ I SSl

Figure 2.2

In problem (*), S corresponds to the space under surveillance, and each SiJ corresponds

to the portion of S covered by the span of some sensor mechanism (in a specified deployment).

Si, depends on sensor technology, whereas S is a fixed volume. Since sensors have various non-

surveillance uses in the real world, it may not be realistic to impose restrictions on the S ,'s just

to make it convenient to check whether S is covered.
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Fortunately, the nature of surveillance maintenance itself provides a useful information,

namely , the size of a potential intruder. Suppose x is the size of the smallest potential intruder

into S. S may be "subdivided" into a finite number of pieces that fit together suitably, each piece

of size at most x. Then the surveillance sensor mechanisms only have to cover (all of) the

vertices (corners) of those pieces. Since there is a finite number of such pieces, this essentially

reduces S to a finite set for the purpose of comparing S to the union any given selection of the

Sie's.

In the first preliminary technical report, alternative ways of subdividing S for this purpose

were considered, and a particular kind of subdivision, the cubical subdivision, was found to be

the most suitable. The cubical subdivision allows an easy denumeration (line-up) of the pieces,

and does not involve too many vertices. Other desirable properties of the cubical subdivision

were also described in the technical report.

The literature of piecewise linear topology contains various types of such a subdivision

of manifolds. Subdivisions of manifolds are also used extensively for homotopy methods in

mathematical programming [1][19] and finite element methods [15][18].

2.2 Our Procedure For Problem (*)

It has been shown that, for the purpose of solving problem (*), S may be regarded as a

finite set (by virtue of results given in Appendix I). But, even with S regarded as a finite set,

problem (*) remains ordinarily harder than the standard set-covering problem, since problem (*)

reduces to the standard set-covering only when n=1 and cost is the objective function. Therefore,

one may not rely on standard set-covering procedures to solve problem (*). Our procedure for
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solving problem (*) is the subject of the second preliminary technical report (Appendix II).

Problem (*) is an NP-complete combinatorial problem, as the standard set-covering is NP-

complete. By the theory of algorithms [7][14], this means that it is highly unlikel. that anyone

can ever find an "efficient" procedure that computes an exact solution for problem (*). As an

illustration of the meaning of this NP-completeness statement, solving an instance of problem (*),

with 10 sensor mechanisms and 5 deployment options for each sensor mechanism, may take years

on a fast digital computer doing one operation per micro-second, if an exact solution is required.

Hence, a realistic approach for real world problems is to use procedures that produce good

approximate solutions. Such approximate procedures are known as heuristic procedures or,

simply, heuristics.

Since they are designed to produce approximate solutions, rather than exact solutions

(even though they may generate exact solutions quite often), heuristics are usually designed to

meet quality specifications derived from particular applications. Indeed, it is generally believed

that any heuristic must be motivated from the needs of some specific applications.

Accordingly, our procedure for solving problem (*) is a heuristic whose features are

motivated by the needs of surveillance maintenance applications. This heuristic is designed to

have the following quality attributes: (i) ability to produce an approximate solution in good run

time, (ii) ability to produce approximate solutions that are close to exact solutions, (iii) ability

to utilize initial solution guesses given by the user or obtained from earlier iterations, (iv) ability

to profitably incorporate new results on standard set-covering and related combinatorial problems.

This heuristic consists of the following main components: (i) a discrete line search (a line

search wherein the function is evaluated at integral points only) that selects combinations of
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sensor mechanisms, (ii) a random selection of deployments for combinations of sensor

mechanisms, and (iii) a "greedy" procedure for computing cover value for any given deployment

of sensor mechanisms.

The discrete line search does "skip and search" operations over the set of all possible

combinations of sensor mechanisms. First, it goes through all k-subsets (of sensor mechanisms),

then through all (k+l)-subsets, and so on. This search procedure allows the user to input a guess

of how many sensor mechanisms may suffice to cover the space optimally, that is, the starting

k, but this is not required. This guess is used to initiate the search, and naturally loses its effect

if it is misleading.

If a selected deployment (of a given combination of sensor mechanisms) does not cover

the space, the heuristic makes another selection of deployment. This way, each combination of

sensor mechanism gets a number of "chances"; the number of chances given to each combination

is determined at heuristic initialization.

Computational experiments indicate that the "greedy method" for computing cover value

(cost or time) is a good choice. One can show that a related divide-and-conquer method suited

to a parallel (processing) computer will perform even better than that greedy method.

Appendix II gives other details of this heuristic for problem (*). It also includes the

source code of a computer program (in C) that implements the heuristic. This program is

included as a subroutine in the larger computer program used for the computational experiments

discussed in section 3 of this report.

11



SECTION 3

COMPUTATIONAL EXPERIMENTS

The computational experiments reported here serve two purposes. First, they are designed

to demonstrate that our procedure for problem (*) generates solutions close to optimal solutions.

Secondly, they are used to examine some of the design choices that define the procedure. Such

a numerical evaluation of design choices may be necessary even if performance guarantees have

already been given analytically.

3.1 Design Choices

The main design choices in our procedure for problem (*) are:

i. the use of binary code to "line-up" all combinations of sensor mechanisms,

ii. the restart feature, instead of a one-pass search,

iii. the use of random deployment, for any given combination of sensor mechanisms,

instead of an orderly enumeration of possibilities, and

iv. the use of a greedy method for computing the objective function values (once the

deployment is determined).

Alternatives to the binary code, such as the gray code, were considered before the binary

code was chosen. Computational experiments (using a program written in BASIC with function

plotting, etc.) put the binary code ahead of other options for two reasons. First, the binary code

is easy to explain. Secondly, the function plots obtained for binary codes were more amenable
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to function minimization than they are for other codes. To explain this apparent superiority of

the binary code, we focused on k-terms (that is, terms of the binary code sequence that have

exactly k l's in their digits), and discovered some orderliness that led us to the "restart" idea.

To see this k-term property of binary code sequences, consider the k-terms of the

following sequence.

0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111,

1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111.

The sequences of k-terms are

0001, 0010, 0100, 1000,

0011, 0101, 0110, 1001, 1010, 1100,

0111, 1011, 1101, 1110,

1111.

These suggested to us that it might be advantageous to concentrate the line search on one

sequence of k-terms at a time. Hence, the idea of restart. Computational experiments with test

problems (described below) suggest that the "restart" feature is indeed a good idea, besides

allowing the user to input a guess about how many sensor mechanisms may suffice to cover the

space.

With regard to randomness in the deployment choice, the only alternative is to enumerate

possibilities on the basis of information obtained from some pre-processing of data concerning

deployment options. We did not perform computations with this alternative because it seems too

much work for too little reward. The deployment choice aspect has significant scope for future

work. However, the randomness seems to have no adverse effect on the results when relatively
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few of the sensor mechanisms have multiple deployment options.

The use of a greedy method for computing objective function values is convenient on

account of speed. Any sensible heuristic for the standard set-covering problem may do equally

well. A "divide-and-conquer" alternative was considered, but this is more suited to a parallel

(processing) computer.

3.2 Hardware and Programming

To some extent, all computational experiments reflect hardware and programming. Our

computer program for implementing the procedure is written in C language so as to take

advantage of C's efficacy in handling complicated data structures. We had presumed that

subdivisions of the set S might require such data structures.

Development started with an IBM RT PC in a UNIX environment, but we switched to

an IBM AT PC (286) and an IBM PS/2 Model 80, so as to take advantage of existing utility

packages. The source code included here as an Appendix is in Microsoft C, using function

prototyping and other features of ANSI C. Our test problems are of the size that will run with

DOS. It is a simple matter to make the little adjustments (function declaration, etc.) that will

make this code run in the environment of other operating systems.

Our program accepts inputs in form of files stored in "binary" (for space use efficiency).

The user is required to supply the file name when the file is to be read or written into. The user

also selects the objective function - cost or time. Next, the user is asked to guess (if possible)

how many sensor mechanisms may suffice to cover the space.
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3.3 Test Problems

Our test problems are not of the most general kind. They have been designed with the

surveillance application in mind. We believe that the surveillance application will ordinarily

have (i) many pieces in the cubical subdivision of S (Appendix I), (ii) few sensor mechanisms,

(iii) most sensor mechanisms having exactly one deployment option. Test problems reflecting

these observations, and computed solutions are given in Appendix IV.

Each problem has six sensor mechanisms, and each sensor mechanism has at most two

deployment options. The coverage span of each sensor mechanism is assumed to be a sphere,

and the set S is assumed to be a rectangular volume. In our experience, when computed "cost"

solution is not optimal, the computed "time" solution usually gives help. In any case, supplying

"guesses" always helps.

It is clear from an inspection of those test problems that there is need for more

computational experiments, especially ones involving large-scale problems, the kind that may

require a computing environment such as that provided by OS/2 or UNIX.
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SECTION 4

DIRECTIONS FOR FUTURE WORK

Directions for further research related to problem (*) are suggested in this section. Three

classes of extensions of problem (*) will be described. The first class has to do with making

problem (*) more realistic in terms of resource constraints, for example, budget constraint and

time constraint. The second class is about how existing commitments may constrain the choice

of sensor mechanisms and their deployment options. The third class of extensions is concerned

with multiple-layer surveillance coverage for selected portions of the space under surveillance.

In addition, further computational experiments on our procedure for problem (*) will continue

to be of interest.

4.1 Resource-Constrained Extensions

Each time an instance of problem (*) is solved, the objective function is either "cost" or

"time". But, in the real world, one may be interested in both time and cost simultaneously. It

may be desirable either to minimize surveillance rescheduling cost, with a limit on the time it

takes to complete the rescheduling, or to minimize the time it takes to complete surveillance

rescheduling, with a limit on the cost of doing the rescheduling.

The following is a formal statement of these two resource-constrained extensions of

problem (*):

(1) Problem (*), with objective function replaced by minimize -ci, subject to the
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constraint that So is in the collection, and max(tj)<T

(2) Problem (*), with objective function replaced by minimize max{tj) subject to the

constraint that Sij is in the collection and M cij < C

Here, T is the time limit, and C is the cost limit. These resource-constrained problems

are "mixed", because each problem is a mixture of combinatorial and continuous variable

optimization problems.

4.2 Commitment-Constrained Extensions

In the real world, existing contracts, concerning orders and supplies, will ordinarily

constrain new decisions. Therefore, decisions involved in rescheduling surveillance coverage

may be subject to commitment constraints. Existing commitments on orders and supplies for

surveillance maintenance may be reflected in problem (*) in form of pre-determined selection of

some sensor mechanisms or some deployment options. Indeed, the standard set-covering problem

may be regarded as an extreme-case member of this class of extensions of problem (*); it is the

case where each surveillance sensor mechanism is allowed exactly one deployment option, an

option probably fixed by some legal contract.

4.3 Multiple-Layer Surveillance Coverage

It is possible that some portions of the space under surveillance in problem (*) are so

special that they require a multiple-layer surveillance coverage. For example, suppose it is

necessary to ensure that portions of the boundaries of the space be covered by at least 2 sensor

mechanisms. This may be required to satisfy some reliability requirements. We would refer to

17



this as a 2-layer coverage problem.

This gives rise to a k-layer extension of problem (*). Problem (*) is obviously a 1-layer

coverage problem. Now, if we allow portions of the space to have 0-layer coverage, and other

portions to have positive-layer coverage, then we have a very practical extension of problem (*).
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APPENDIX I

SUBDIVIDING 3-MANIFOLDS FOR SURVEILLANCE MAINTENANCE

by

S. Awoniyi & L. Frair

Abstract

This report contains a procedure for checking whether a given set of surveillance sensor

mechanisms is sufficient to cover a given airspace, say S, under surveillance. This procedure

consists of using information about the size of the smallest potential intruder (into S) to subdivide

S into pieces that fit together suitably. The vertices of these pieces constitute a finite set of

points that the sensor mechanisms must cover. Hence, this procedure essentially replaces S with

a finite set; then, checking whether S is covered by the sensor mechanisms becomes a

straightforward task on a digital computer. Also included (as Appendix II) in this report is a

menu-driven computer program (in C programming language) that implements that procedure;

it subdivides S and denumerates (assigns numbers to) its pieces, in a manner that helps record-

keeping. This computer program will be incorporated into the computer codes that will be

delivered to the US Army Strategic Defense Command under the research contract DASG-60-90-

C-0142. In the mean time, this computer program may be used for experimentation and

demonstrations.
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1. Objective of Results

The results given in this report address aspects of the generalized set-covering problem

described in the research grant DASG-60-90-C-0142, sponsored by the United States Army

Strategic Defense Command. The problem is recalled here:

(*)Given: S, a subset of the 3-dimensional space, R3; subsets Si, i=l..., m, f=l,...,n,

that cover S in the sense that S is the union of all the S j's; two numbers t% and

cii that will be interpreted as "time" and "cost" respectively. Required: To

determine an optimal collection of the S i's that cover S, with no more than one

Sii for each i, and optimality defined in terms of minimizing max {tj:Sij is in the

collection) or minimizing the total costs of the S i's in the collection.

This set-covering problem shall henceforth be referred to as problem (*).

Any method for solving problem (*) must include a procedure for checking whether the

set S is equal to the union of some of the S 's. If the set S were a finite set, then it would be

a straightforward matter to do this checking on a digital computer.

In the surveillance applications of problem (*), the set S is not finite; S is a 3-dimensional

manifold (that is, a full-dimensional volume in R3). S represents the space under surveillance,

whereas Si represents the portion of S that may be covered by the i-th surveillance sensor

mechanism functioning in its j-th optional positioning.

If S is a 3-manifold without any special features, to determine whether S is equal to the

union of some of the S ~'s is a very hard task on a digital computer. But the surveillance

maintenance situation allows us to regard S as "variably finite" (this term will be fully explained

in Section 2). Utilizing this special feature of S, we give in this report a reasonable procedure

2
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for comparing S and the union of any collection of the Sii's.

This procedure consists of (a) subdividing S into a finite number of pieces of suitable

sizes, with each piece "contained" in at least one of the S1 's, and (b) denumerating (numbering)

the pieces in a way that will facilitate efficient record-keeping. These results essentially replace

S with a finite set ( ,.. •r, ), wherec is the k-th piece of the subdivision, and p the total

number of such pieces. For overall efficiency, it is desirable to make p as small as possible,

while, at the same time, ensuring that it does not take much effort to check whether a piece is

covered by an Sij,. Section 2 of this report gives details of these results. A computer code (in

C language) implementing this procedure is included as Appendix II.

2. Description of Results

This section describes our procedure for comparing S and unions of the S j's. We shall

begin by making some problem-reducing observations on the surveillance maintenance situation.

These observations are instrumental to our replacing S with a finite set, thereby making the set

comparison task a straightforward one.

(*)Observations: (i) S is compact, since surveillance over an unbounded space is not

practicable; (ii) surveillance sensor mechanisms do not have to cover every point of S;

they only need to cover points in S that are not too far apart relative to the size of the

smallest potential intruder into S.

To substantiate the claim contained in the second part of those observations, let us

suppose S is a rectangular volume, and the smallest potential intruder into S is of size 4K. Let

S be subdivided into polyhedral pieces (that is, pieces with straight boundaries) {a,....a-p}, each

Cr. with diameter less than ,o (the diameter of a set is the length of the longest straightline
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contained in the set). The compactness of S guarantees the existence of such polyhedra pieces.

Obviously, the surveillance sensor mechanisms only need to cover the vertices of the 0's, since

that guarantees that any intruder will be detected. Figure 1 gives an illustration in R2 of possible

subdivisions of manifolds. Thus, S is effectively replaced with a finite set, the set of all vertices

of the pieces of a subdivision of S. Hence, by virtue of the observations (*), S may be regarded

as a "variably finite set". The qualifier "variably" is necessary because there are many different

w,'ys of subdividing S into pieces *,,, giving rise to many different finite sets for replacing

S.

As one can see from Figure 1, some subdivisions of S are better than others. In choosing

a subdivision of S, it is desirable to

(i) minimize the number of (subdivision) pieces; Figures l(a) and l(c) show examples

of subdivisions with relatively too man- pieces;

(ii) avoid repeating a vertex treatment in assigning (subdivision) pieces to the S j's; such

a repetition will occur if there are more pieces than vertices; Figure l(a) illustrates

this point;

(iii) ensure effective denumeration of pieces (effective in the sense that each piece number

automatically identifies the corresponding piece, and vice versa), so as to facilitate

efficient record keeping; in this regard, the subdivision of Figure l(b) is superior to

those of Figures 1(a) and 1(c).

Evidently, the usual performance criteria for subdivisions in homotopy algorithms [5]

such as "directional density", do not apply here because subdivision traversing is not of interest

in the context of surveillance maintenance. Appendix I gives a formalization of criteria (i) and

(ii) above.

4
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6 1

(a) Using 3-sided pieces (b) Using 4-sided pieces

CT9i

(c) Using 5-sded pieces

Figure 1; Ii[ustration in R2
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On the basis of the three criteria listed above, the subdivision of Figure l(b) is clearly

superior to those of Figures l(a) and 1(c). In fact, in R2, when one considers using k-sided

pieces, for k=3,4,..., it is not hard to see that the subdivision in Figure l(b) is superior to all

others. In R3, analogues of the subdivision of Figure l(c) fail our criteria because they involve

too many vertices and are too complicated for effective denumeration; such subdivisions are

never used in the literature of homotopy algorithms and finite element methods [2].

Therefore, the feasible options reduce to choosing between 3-dimensional analogues of

the subdivision of Figure I (a), which are known as "triangulations", and 3-dimensional analogues

of the subdivision of Figure l(b), which we shall term "cubical subdivisions". Cubical

subdivisions cover R3 with identical cubes or rectangular blocks, whereas triangulations cover R3

with tetrahedra. Now, triangulations fail our criteria on account of having more pieces (called

simplices) than vertices (so vertex treatment repetition will occur), and because they are difficult

to denumerate effectively. In contrast, the cubical subdivision has relatively few pieces (always

less than the number of vertices), and is amenable to easy, effective denumeration. Indeed, for

the cubical subdivision, only one vertex of each piece (its origin) needs to be assigned to the Sj's,

because the other vertices (of the piece) are origins for other pieces, unless the piece happens to

lie on some of the boundary of S. Figure 2 illustrates this point about the cubical subdivision.

Hence, we have a case for choosing the cubical subdivision for our purposes here.

But to conclude the case for the cubical subdivision, it is necessary to consider the amount

of record-keeping that must be done at the boundary of S, taking into account the types of S that

may arise in the surveillance maintenance situation (consideration of the interior of S having been

subsumed in the foregoing comparison of subdivisions of S). Now, since, by definition, S

represents an airspace, one may assume that S is essentially a 3-manifold of the type shown in

6
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S 3 X 4 square c F/

I

I u 0 h12
I origin for Vjb origin f'or - origin for u,.

I

UJ7
origin for u- origin For u origin for o-

origin for a; origin For c or, in for oa

origIn for a- origin For a,- origin for cis

Figure 2, Efficacy of the Cubicia

Subdivision in R2
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Figure 3(a). As the manifold of Figure 3(a) is clearly homeomorphic to that in Figure 3(b), in

a topological sense, one may then assume that S is essentially a rectangular volume, without any

loss of generality. Hence, S indeed possesses the features that have been demonstrated ( in the

foregoing) as reinforcing the cubical subdivision's superiority. This concludes our case for

choosing the cubical subdivision.

The foregoing analysis is the basis for a computer program that is included here as an

appendix. This computer program gives a cubical subdivision of S, and denumerates its pieces.

It will be included as a component of the final computer implementation of our solution of

problem (*). Presently, this computer program may be used in computational experiments and

demonstrations on the cubical subdivision.

The computer program is menu-driven and user-friendly. First, it requires the user to

supply the dimensions (length, breadth, height) of the rectangular volume S. Then the user

makes a selection from the following menu:

A - To Compute Number Assigned to a Piece

B - To Compute the Piece for a Given Number

C - To Return To Operation System

If A is selected, then the user is asked to supply the coordinates of the piece's origin; the

computer program then returns the piece's number. If B is selected, then the user is asked to give

the number, the program then returns the origin of the corresponding piece, unless the given

number is too big to be a piece number. In the case that the number is too big, the program

returns an error message.
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I 3(a~) S Airspace

I 3 (b) S Af ter Homeomorphic
I Transf ornation

I Figure 3:, The Form of S
In Problem (*K)
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3. Concluding Remarks

Besides allowing us to compare S to collections of the Sj's, replacing S with a finite set

also transforms problem (*) into a generalized discrete set-covering problem that is amenable to

a host of discrete optimization strategies and heuristics. These strategies include divide-and-

conquer, discrete line search, decomposition, and enumeration.

To employ these strategies to solve problem (*), we shall use the computer program

included here as a "function" (or subroutine). This function will be called for doing "initial set-

up" (implicitly replacing S and the S1 's with finite sets), and for checking for feasibility when

collections of the S,,'s are examined.

Since each Si, will contain relatively few of the pieces (of the cubical subdivision of S),

S,, may be represented as a "linked list". The C programming language is ideal for such a data

structure.

Now, our analysis (in Section 2) that resulted in the choice of the cubical subdivision is

relatively informal. A more formal analysis resulting in the same conclusion is included here as

Appendix I.

I
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APPENDIX I

A FORMAL CASE FOR THE CUBICAL SUBDIVISION

Here, we present in R2 a more rigorous version of our case for the cubical subdivision.

We shall also indicate how this analysis may be extended to R3. First, a number of concepts will

be defined.

Definition: For any polygon, o, in R2, the length of the longest side shall be called the

polygon's surveillance diameter, and will be denoted by sdiam(q).

0"
The number sdiam(a) is the upper bound on the size of intruders that may enterundetected by

surveillance sensors that cover the vertices of v- only. Our next definition is a performance

measure (for subdivisions) summarizing two of the three criteria given in Section 2.

Definition: For any n-sided polygon, a-, in R2 with area A, the number A/n shall be called the

polygon's index of surveillance subdivision efficacy, and will be denoted by isse(t).

If) for a polygon .sdiam(i) is acceptably small and isse(a) is relatively large, then

a- is a good candidate for use as a subdivision's basic building block.

The following lemma follows easily from the definitions above:

Lemma: (i) If cr is an equilateral triangle with side q , then

sdiam(") = 4 and isse(cr) = o(2/4ff

(ii) If a- is a square of side length o, then

sdiam(o) = a and isse(a) = a2/4

Hence, for surveillance purposes in R2, it is better to subdivide S into squares rather than

equilateral triangles, especially if S happens to be a rectangular area. However, that does not yet

indicate that squares are preferable to all triangles; this is the object of the following proposition.

12
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Proposition: For any triangle, Cr, in R2 with sdiam(a) = o,

isse(cr). <k2 4

Proof (outline): It suffices to show that die area of the triangle crdoes not exceed 3m2/4 (the area

of corresponding equilateral triangle). Since sdiam(T) = O , the longest side ofa'is of length o(.

With a simple construction, one can enlarge a- into an isosceles triangle with two sides equal -to x.

Then, using an elementary optimization technique, one can show that if a- is isosceles with

sdiam(a) = o, then the area of T does not exceed that of an equilateral triangle with side length

equal to. G4.

Thus, we have formally demonstrated that the cubical subdivision of S is superior to

triangulations of S in R2, even without using the frct that S is a rectangular area. This conclusion

also holds true in R3, but the analysis is a lot longer. In R3, the tetrahedron replaces the triangle

of R2, and the cube replaces the square. Of course, the definitions of sdiam(cr) and isse (T)

must be recast -- "facet" replacing "line", "volume" replacing "area", etc.

Obviously, we have not considered k-sided polygons in R2, for k=5,6,... This is because

such polygons are too complicated (when interpreted for R3) to allow sensible denumeration of

subdivision pieces. They also fit poorly on the boundary of S, especially when S is a rectangular

volume.

13
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A PP E NDI1X I I
1 of 2

* CUBICAL SUBDIVISION OF 3-MANIFOLDS FOR SURVEILLANCE MAINTENANCE: */
* WE ASSUME. WITHOUT LOSS OF GENERALITY, THAT THE MANIFOLD IS A
* RECTANGULAR 3-DIMENSIONAL VOLUME; THE MANIFOLD IS SUBDIVIDED INTO*/
* UNIT CUBES, AND THE CUBES ARE DENUMERATED FOR EFFICIENT RECORD
* KEEPING; THE USER SHALL SUPPLY THE MANIFOLD'S DIMENSIONS (LENGTH.*/
* BREADTH. AND HEIGHT), AND THEREAFTER SELECT FROM A MENU THAT */

* GIVES A CUBE'S NUMBER WHEN THE CUBE'S ORIGIN COORDINATES ARE */
* SUPPLIED. AND GIVES A CUBE'S ORIGIN COORDINATES WHEN THE CUBE'S */
* NUMBER IS SUPPLIED. */

oid pisnum(void);
oid numpis(void);
nt 11, bb, hh;
ain()
{
char ss;
printf(" THIS PROGRAM GIVES A CUBICAL SUBDIVISION OF A\n ');
printf(" 3-DIMENSIONAL RECTANGULAR BLOCK\n\n
printf("Please ENTER the dimensions of the block, p:q:r -- > ");
scanf("%d:%d:%d", &ll, &bb, &hh);
start:
printf("\n\n");
printf("\n ENTER \n");
printf("\n A -- To Compute Number Assigned to a Piece\n");
printf("\n B -- To Compute the Piece for a Given Number\n");
printf("\n C -- To RFtI n to DOS\n");
printf("\n YOUR SELECTION --- > ");
ss = getche(); printf("\n\n");
switch(ss)

{
case 'A':

pisnum(); break;
case 'a':

pisnum(); break;
case 'B':

numpis(); break;
case 'b':

numpis(); break;
case 'C':

exit(0);
case 'c':

exit(0);
default:

goto start;

}
printf("\n\n");
printf( ---------------------------------- \n\n\n");

printf("Press any key to continue");
ss = getch();
goto start;

1

14



APPENDIX I

2 of 2

/* THIS PROCEDURE COMPUTES THE NUMBER ASSIGNED TO ANY -/
/* PIECE OF THE CUBIC SUBDIVISION OF THE BLOCK. IU ARE */
/ REQUIRED TO INPUT THE ORIGIN OF THE PIECE.\n\n-/

void pisnum(void)
{

tnt xx, yy, zz, temp;
startl: .....

printf("Please ENTER the origin coordinates, x:y:z -- >

scanf('%d:%d:%d", &xx, &yy, &zz);
if(xx>11 1I yy>bb 11 zz>hh)
{printf("\n\n!^!^!^!^!^!^^!^INPUT ERROR! TRY AGAIN PLEASE\n\n\n");
goto startl; )

temp = (11*bb*zz)+(1H*yy)+xx+l;
printf("\nFor the piece with origin (%d,%d,%d), ". xx, yy, ZZ);
printf("the corresponding number is %4d \n', temp);

/* THIS PROCEDURE COMPUTES THE ORIGIN OF THE PIECE */
/* CORRESPONDING TO ANY GIVEN NUMBER*/

void numpis(void)
{ .

int num, xx, yy, zz, temp;
start2:
printf("Please ENTER the number -
scanf("%d", &num); printf("\n");
if (num>(11*bb*hh))

{printf(\n\n!A!A^!A!^A!AINPUT ERROR! TRY AGAIN PLEASE\n\n");

goto start2;
I

num--l; temp - ll*bb;
zz - ( num - (numttemp) )/temp; num -- zz*temp;
yy - ( num - (num%11) )/11;
xx - num - yy*ll;
printf("The corresponding piece has (%d,%d,%d) ', xx, yy. zz);
printf(mas origin coordinates\n\n");
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A RESTART PROCEDURE FOR A GENERALIZED

SET-COVERING PROBLEM IN SURVEILLANCE MAINTE ANCE

I by
Samuel Aoniyi & Lester Frair

Abstract: We describe a heuristic procedure for the generalized

set-covering problem defined in our research contract DASG

60-90-C-0142 with the United States Army Strategic Defense Command,

Huntsville, Alabama. This heuristic is not a variant of any

existing procedure, as the problem itself has not appeared in the

literature. The quality attributes of this heuristic include

(i) ability to produce an approximate solution in good run time,

(ii) ability to produce approximate solutions that are close to

exact solutions, (iii) ability to improve upon initial solution

guesses given by the user or obtained from earlier iterations,

i (iv) ability to profitably incorporate new results on set-covering

and related combinatorial problems. The main components of this

heuristic are a discrete line search with restart, a random

selection operation, and a greedy procedure on a subproblem. A

computer program (in C language) implementing this heuristic is

included as an Appendix. The next report on this research contract

(which is also the final report) will give a full account of our

computational experiments with this heuristic.
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I 1. Introduction

This is the second of three technical reports fulfilling a

requirement of our research contract DASG 60-90-C-0142 with the US

Army Strategic Defense Command, Huntsville, Alabama. The goal of

this research contract is to design solution procedures for the

generalized set-covering problem described in (*) below.

(*)Given: S, a subset of the 3-dimensional space, R3 ; subsets

SII il, ... ,m, j=l,...,n, that cover S in the sense that S

is the union of all the Sjj' s; two numbers t~j and c±j that

will be interpreted as "time" and "cost" respectively.

Required: To determine an optimal collection of the Sjj's

that cover S, with no more than one S±j for each i,

and optimality defined in terms of minimizing

max{t± : S± is in the collection) or minimizing the total

cost of the S±'s in the collection..

This set-covering problem shall be referred to as problem (*).

Problem (*) is a representation for a class of surveillance

maintenance problems including the problem of restoring

p surveillance coverage for a system of surveillance sensor

mechanisms after a sensor mechanism (in the system) fails. The set

S represents the space under surveillance; each subset S±,

represents the portion of S covered by the i-th surveillance sensor

mechanism functioning in its j-th optional deployment/positioning;

I each c., represents the cost of the j-th deployment of the i-th

sensor mechanism; t., represents the time required for the i-th

2
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sensor mechanism to be placed in its j-th optional deployment.

Selecting a minimum-cost set of S,,'s covering S corresponds to

restoring surveillance coverage at minimum cost, whereas selecting

a minimax-time set of Si.'s covering S corresponds to restoring

surveillance coverage within the shortest time possible.

Our first technical report is entitled "Subdividing 3-

Manifolds For Surveillance Maintenance", and our third technical

report shall consist of a summary together with a user-friendly

computer implementation of the results presented in the first two

technical reports. The third report will also give indications

of further work that should be done in order to profitably adopt

the results of these reports in the real world.

This second technical report describes a practical solution

procedure for problem (*). To be able to see the origins of

certain features of this procedure, it is necessary to understand

the combinatorial nature of problem (*). Suppose there are di

deployment possibilities for the i-th sensor mechanism. Then,

there are (d1+l) (d2+1) ... (dm+l) valid combinations of the S~J's that

must be considered explicitly or implicitly by any procedure that

computes an exact solution to problem (*). If d,=n, each i, then

the number of combinations of the S±'s is (n+l)m.

Suppose, also, that p computational steps are required to

compute the (objective function) value of each of those

combinations of S±,'s. Then, the maximum number of computational

steps needed to compute an exact solution to problem (*) is

(d 1+l) (d2+1) ... (d +1)p. Since we are assuming that it does not

3
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depend on the S±,'s, the number p ordinarily depends on the size of

the space S; therefore, we shall henceforth write it as p(ISI).

We shall refer to the number (d1+1) (d2+l)...(d.+l) p(ISI) as

the computational upper bound (c.u.b.) for problem (*). The c.u.b.

has some practical implication. To explain this practical

implication of the c.u.b., let us consider a well-known special

case of problem (*), namely the standard set-covering problem.

When d=l, all i, (that is, each sensor mechanism has exactly one

deployment option), problem (*) reduces to the standard set-

covering problem (by virtue of results presented in our first

technical report), and the c.u.b. becomes 2p(ISI). For instance,

for p(ISI) > 1 and m = 50, the c.u.b. for the set-covering problem

is at least 250, and this number of computational steps will take

a fast digital computer doing one operation per micro-second about

35 years to complete (see pp 141 of [3] for more on computational

speeds and their computer time requirements).

One clear conclusion from the foregoing observations

concerning c.u.b. is that if a procedure must compute an exact

solution for an instance of problem (*), then, unless m is suitably

small, that procedure must keep p(ISI) small enough and avoid

explicit consideration of most of the combinations of the Sil's.

Now, this has a bearing on the theory of algorithms. It is well

known in the theory of algorithms that the set-covering problem is

NP-complete [1] [7]; this means that it is highly unlikely that one

can ever find a practical solution procedure (for the set-covering

problem) that keeps p(ISI) small enough and, at the same time,

4

I
I



APPENDIX II

avoids explicit consideration of a good number of those

Icombinations of the S±'s. Our third technical report expatiates

further on this.

IHence, in solving problem (*) in the real world, unless S and
m are suitably small, approximate solutions should be the goal;

seeking an exact solution might take too long. Such approximate

solutions should not be arbitrary, but must satisfy sensible

specifications depending on the application. In section 2 of this

report, we describe attributes that we consider desirable for an

approximate solution procedure for problem (*), in view of the

applications described above. We shall follow standard

terminology, and refer to approximate solution procedures as

heuristic procedures or heuristics.

In section 3, our heuristic procedure for problem (*) is

described. Section 4 describes our computer program (in C) for

implementing this heuristic, and the program's source code is

included as an Appendix. Our next technical report will give a

complete account of our computational experiments.

2. Quality Attributes of Heuristics for Problem (*)

Since heuristics are, by definition, designed to produce

I approximate solutions, rather than exact solutions, it is necessary

to require of a heuristic certain attributes that constitute what

may be termed "good quality". (Of course, a heuristic may very

well produce exact solutions most of the times). For any

heuristic, desirable quality attributes would ordinarily be

5
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determined by the circumstances of particular real world

applications. Hence, for the same problem model, different

heuristics would be suited to different real world applications.I In this report, we shall regard problem (*) as having two broad

Iapplication types, namely, the surveillance maintenance application
with cost minimization as objective, and the surveillance

maintenance application with maximum-time minimization as

objective. It turns out that these two application types require

slightly different heuristic attributes.

For the cost minimization version of problem (*), it is

desirable that a heuristic be able to produce approximate solutions

frequently close to exact solutions. The heuristic's speed is of

lesser significance than the quality of approximate solutions

generated. However, if a heuristic has a way of improving upon

initial solution guesses, then good speed would ordinarily

translate into approximate solution of good quality after repeated

iterations.

For the maximum-time minimization version of problem (*), it

may be desirable that a heuristic be fast, while at the same time

pproducing an approximate solution of good quality. (Recall that

the maximum-time minimization version is a representation for the

problem of restoring surveillance cover as quickly as possible).

As in the case of cost minimization, if a heuristic can produce an

approximate solution that improves upon an initial solution guess,

then good speed should result in a good final approximate solution.

Good speed together with quality solutions would enhance the

6
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usefulness of the heuristic, especially in emergency situations.

In general, a heuristic for problem (*), irrespective of type

of objective function, should be designed to be able to incorporate

future developments on set-covering and related combinatorial

optimization problems. This is an especially desirable heuristic

attribute because problem (*) is practical, NP-complete, new (in

the literature), and likely to generate significant, new research

activities in the near future.

Finally, as the question of surveillance maintenance concerns

practical system security, usually involving the protection of

precious human lives and property, it is desirable that a heuristic

for problem (*) be capable of being described in terms that may be

easily comprehended by persons who have day-to-day responsibility

for such surveillance systems. Such clarity should enhance the

heuristic's chances of being adopted in real-world situations.

3. Our Heuristic For Problem (*)

We describe in this section our heuristic for problem (*).

This heuristic is designed to have the attributes described in

section 2. In summary, the attributes are: (i) ability to produce

an approximate solution in good run time (that is, good

computational complexity), (ii) ability to produce approximate

solutions that are close enough to exact solutions, (iii) ability

to improve upon initial solution guesses given by the user or

obtained from earlier iterations, (iv) ability to profitably

incorporate new results on set-covering and related
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combinatorial problems, (v) ease of comprehension, so as to secure

user's trust.

Current literature contains nothing about problem (*) in its

general form. Results on the set-covering problem [+] [71 are all

that exist in current literature relating directly to problem (*).

Therefore, our heuristic for problem (*) is not a variant of any

existing procedure. The following is an informal, application-

oriented description of the heuristic.

Heuristic

Step 1: Systematically skip and search through (a denumeration

of) subsets of the given set of sensor mechanisms so as to find a

combination of sensor mechanisms possibly "better" than the

I current combination, if any. Thereafter, go to step 2.

Step 2: Select a suitable deployment for the sensor mechanisms

contained in the combination obtained from step 1 above.

Thereafter, go to step 3.

Step 3: Compute the (objective function) value for the deployment

of step 2. If that value is infinity (which means that the

deployment does not cover the space), then go back to step 2 for

another deployment, unless "chances" are exhausted. (The number of

1"chances" is set at heuristic initialization). Thereafter, go to

step 4.

I Step 4: Do updating and book-keepinQ to take into account the value

obtained in step 3. Check stopping condition. If stopping

condition is satisfied, then STOP; otherwise, go back to step 1,

I8
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with information to guide the next "skip and search".

The description above gets formalized as the underlined basic

operations are explained in details. We will now describe each of

these operations.

(a) "Systematically Skip and Search"

This is essentially a line search, except that the set over

which this is done is the discrete set (1,... ,2'-1 coded in binary

numbers. This set is constructed as follows. First, all

combinations of the given sensor mechanisms (m of them) are "lined

up" (denumerated) using a binary coding. For example, let us

suppose m=3. Then the binary code line-up of all combinations of

the three sensor mechanisms is given by the following:

001 010 011 100 101 110 111

{1) (2) (1,2) (31 (1,3) (2,31 (1,2,3)

Note that the binary numbers above form an increasing sequence for

Iwhich the n-th term is obtained by adding 1 to the (n-l)-th term;

in decimal numbers, that sequence is 1, 2, ... 7.

I The rule for assigning binary numbers to combinations of

sensor mechanisms is as follows:

Rule 3.1: Suppose a combination of sensor mechanisms is given. For

I i=l... m, if the i-th sensor mechanism is included in the given

combination, then, counting from right to left, set the i-th digit

I (of the binary number) to 1; otherwise set it to 0. (The inverse of

j this operation is obvious).

Using Rule 3.1 above, all combinations of sensor mechanisms are

9
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lined up in binary codes between 1 and 2'-l. Hence a search

through all combinations of sensor mechanisms becomes a search over

the set {1,...,2"-1).

But this "skip and search" does not cover all of (1,...

every time. The search confines itself to k-subsets (of the set of

sensor mechanisms) only. After completing the search over k-

subsets, it goes on to (k+l)-subsets, and thereafter goes on to

(k+2)-subsets, and so on. At the initialization of the heuristic,

the user is asked to provide a starting k, if he can; otherwise m/2

or (m+l)/2 is used as initial k. This initial k is the means by

which the heuristic accepts initial solution guesses from the user.

Details of how this discrete line search starts off, and how it

skips around (inside the set of binary coded integers described

above) to find the next subset of sensor mechanisms will be given

later in this section. For now, we assume that it does find the

next subset, that is, a combination of sensor mechanisms.

(b) "Select a Suitable Deployment"

This is a random selection. Suppose d, is the total number of

deployment options for the i-th sensor mechanism. A random positive

integral number, say r, is generated, and then deployment option

(r mod d)+1 is chosen for the i-th sensor mechanism.

This way of selecting deployments has performed fairly well in

our computational experiments. This aspect of our heuristic is

amenable to certain advanced results in probability and measure

theory, but that is not of much relevance to our immediate purpose

here.

10
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(c) "Compute the Objective Function Value"

This reduces to solving a standard set-covering problem. Any

reasonable heuristic for the standard set-covering problem could be

used here. We chose a greedy heuristic, but we know that a divide-

and-conquer method should be preferable on parallel computers.

Again, computational experiments indicate that this is a good

choice.

Now, the given deployment of sensor mechanisms may not give a

cover for the space. If the given deployment covers the space, then

a finite value is returned by the greedy heuristic; otherwise the

value of this combination is set to infinity. In the case that the

given deployment does not give a cover, the corresponding

combination of sensor mechanisms may get another chance. The

deployment generation process described above may be repeated for

the' combination, unless the number of "chances" for the combination

has reduced to 0. The number of chances is determined at heuristic

initialization; it is the maximum number of random deployments that

may be generated for each combination of sensor mechanisms each

time it (the combination) is presented by the "skip and search"

step. For every deployment generated, the number of chances reduces

by 1.

(d) "Do Updating and Book-keeping"

First, some terminology. As the integers 1, 2, ... , 2m-1, are

points of the real line, we shall refer to their binary equivalents

0.. .01, 0... 10, , 1...11, as "points". Recall that each

of these points corresponds to a subset of the given set of sensor

11
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mechanisms. For a point p, the objective function value shall be

denoted by f(p).

Our heuristic always maintains a 3-point v-pattern -- points

PL, PN PR such that PL < PM < PR and f(PL) > f(Px) < f(pR)-

Figure 3.1 illustrates the 3-point v-pattern. The combination of

sensor mechanisms from "skip and search" step corresponds to some

point, say p., inside the interval [PlPR]. "Updating" consists of

PM

Figure 3.1 -- 3-point v-pattern

replacing either pL or PR with p. in the 3-point v-pattern. Which

one gets displaced depends on the magnitude of p. relative to that

of px and the magnitude of f(p.) relative to that of f(px). If

either (p. < p & f(pu) < f(pM)) or (pN > pa & f(pN) > f(p)), then

pR is displaced; otherwise p. is displaced.

"Book-keeping" consists of recording the points constituting

the current 3-point v-pattern and their objective function values.

It also includes recording information about the "best" point so

far; this is necessitated by the heuristic's need to start off and

"restart" in a certain manner (see (f) below). As it goes from

k-subsets to (k+l) -subsets, the heuristic uses a restart similar to

12
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the first heuristic initialization (see (f) below).

(e) "Check Stopping Condition"

Assume the last "skip and search" step consists of searching

among k-subsets. If k=rm, our heuristic computes the objective

function value for the point (1,...,1), prints all results, and

STOPS. Suppose k < m. If current p. is the only k-subset point in

the interval [p., pa], then a switch to (k+l)-subsets is indicated

as the heuristic returns to step 1; otherwise the heuristic returns

to step 1 with information that the search is still on k-subsets.

(f) More details on the Line Search

Let L(k) denote the binary number with l's as the first k

digits and O's as the last m-k digits, counting from right to left,

and R(k) the binary number with 0's as the first m-k digits and l's

as the last k digits. Lemma 3.1 below indicates how we will use

L(k) and R(k).

Definition For the binary code sequence

0... 01, 0 ...I10, 0 ... 11, . .. . . I

a term shall be called a k-term if it has exactly k l's in its

digits.

Lemma 3.1 All k-terms are contained in the interval [L(k),R(k)].

Proof: This becomes obvious when one remembers that the n-th term

is obtained from the (n-l)-th term by adding 1. ##

To start searching through k-subsets, our heuristic sets

pL=L(k), pR=R(k), and pm equal to a k-term close to (L(k)+R(k))/2.

Lemma 3.2 below shows how p. may be obtained.

Lemma 3.2 (Skipping Lemma) Suppose k < m.

13
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(i) Let p(k+l) be a (k+l)-term. Obtain a k-term q(k) from p(k+l)

by setting to 0 the rightmost nonzero digit of p(k+l) . Then, there

is no other k-term between q(k) and p(k+l).

(ii) Let u(k) be a k-term. Obtain a (k+l)-term w(k+l) from u(k) by

setting to 1 the rightmost zero digit of u(k). Then, there is no

other (k+l)-term between u(k) and w(k+l).

Proof: Express terms in decimal numbers, and the desired

conclusions follow from straightforward comparisons. ##

When it switches from k-subsets to (k+l)-subsets, the heuristic

restarts the search the same way it starts the search through k-

subsets, except that k is replaced by k+l.

When the heuristic starts or restarts, the objective function

values may not give the desired v-pattern. This apparent difficulty

is overcome by saving the best of the objective function values, if

it'is good enough (see "Book-keeping" under (d)), and thereafter

setting f(pJ) and f(p.) artificially so as to obtain a v-pattern.

After its initialization, the heuristic applies lemma 3.2 to

the integral part of (p,+p,)/ 2 or (p+ps)/2 to obtain p.. It is this

application of lemma 3.2 that constitutes "skipping" in this

heuristic. The kind of skipping done here is similar to what might

be done by a procedure doing discrete line search on the set of

integers divisible by 7, then on the set of integers divisible by

9, thereafter on the set of integers divisible by 11, and so on.

To conclude this description of our heuristic, we now st.ate its

computational complexity (that is, its speed). First, our earlier

14
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description of "Updating" needs a little adjustment so as to ensure

a certain speed-up. Recall that p. is obtained from (pL+px)/2 or

(pm+pR)/2, and then a new v-pattern is formed. Let us refer to the

Iintegral part of (pL+px) /2 or (p,+pR) /2 as the "source" of N3. To

I ensure that it discards about 1/4 of current interval with every

"skip and search" step, the heuristic must replace p. with its

I"source" as it (that is, p) is about to become a part of the 3-

point pattern, and regard f(p.) as the function value for this

I "source". This adjustment ensures that the heuristic runs in

o (1 S Im21ogl. 32) time, since our greedy procedure for set-covering

runs in o(ISIm) time. Here, ISI is the total number of vertices of

the cubical subdivision of S given in our first technical report.

I4. Corresponding Computer Program

The major subroutines of our computer program are close to the

heuristic operations described in section 2. The flow charts of

Figures 4.1 ana 4.2 display the logic of this computer program, and

the following table describes a useful correspondence between the

I heuristic operations and the program subroutines.

Two simplifying assumptions have been made. First, we assume

that the space S is a rectangular volume in R3 . We also assume that

each surveillance sensor mechanism has a spherical coverage or

span. These two assumptions are essentially assumptions about

sensor technologies, and could be discarded without adversely

I affecting the basic features of the computer program. Such

technological assumptions will be thoroughly considered in our

I15
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follow-up research work.

Heuristic Operation Program Subroutine

setup)

skip and search < ----- > restart()

nextpt()

compute objective function < ptvalue()

updating and book-keeping < > update()

Computational experiments with this program have been

Iencouraging. The results of these computational experiments shall

be fully described in our next technical report.

III

I
I
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/* discrete line search heuristic main driver*/
#define CHANCES 1
#define BIG 5000
#define LIM 20
#define RIM 80
#include mmalloc.h"
#include "stdlib.h"
#include "stdioh"
void setup(void);
void nextpt(void);
void ptvalue(void);
void update(void);
void restart(void);
void output(void);
void binen~int);
mnt probe(int, int. int. int);
mnt space[51;
float sensor[2][LIM], deploy[5]CRIMI;
mnt subset[LIM], index[LIM];
int ns, kstrt, jj, objflag;
int. pnt(3], newpt, gap;
float value[3]. newval. tempv;
float resultl[5]ILIM], aresult[51[LIM]. cresult(51[LIM];
mnt 1. w. h. pieces, seed;
char fname[6]. fnamel[71, fname2f7];
main()

FILE *fptr, *fptrl, *fptr2;
mnt J,;
printf( \nn)
printf("The set of data for this procedure exists as a DATA\n");
printf("FILE. You are required to give the NAME of this file.\n\n");
printf("You may not use more than 6 characters for this file\n");
printf ("name. \n");
printf (" nn")
printf("Please give the FILE NAME - no more than 6 characters--
fflush(stdin); scanf( "%s", fname); printf("\n\n");
fnamel[0]='s'; fname2[0]='d';
for (J-0; J<6; J++)

f
fnamel~j+11=fnamej]; fname2[j+1]=fname[j];

fptr=fopen(fname, "rb");
fread(space, sizeof(space), 1, fptr); fclose(fptr);
fptrl-fopen(fnamel, "rb");
fread(sensor, sizeof(sensor). 1, fptrl); fclose(fptrt);
fptr2-fopen(fname2, "rb");
fread(deploy. sizeof(deploy), 1, fptr2); fclose%1fptr2);
setup()
for ( jj - kstrt; ii < ns; jj++

I nextpto;
while ( gap !- 0
( ptvalueo; update(); nextpto; I

restart()

output();

I

/* initiates the line search iterations
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void setup(void)

int i, j. k. temp. tempi. sum;
1-space(0]/space[31 + 1;
w-space(1]/space(3] + 1;
h-space[2]/space[3] + 1; pieces-l*w*h; seed-i;
ns-space (4]; sum-0;

*for (J-0; J<ns; J++)
( index~jI-sum; ternp-sensor(1J[j]; sum+-temp; I

printf("Please SELECT an objective for this surveillance problem~n\n");
printf(" 1 -- To Minimise Maintenance Costs\n~n");
printf(" 2 -- To Minimise Maintenance Task Time\n\n");

*printf(" YOUR SELECTION -- > ');
scanf(V%d", &objflag); printf("\n\n");
printf("Would you guess the number of surveillance sensor mechanisms\n");
printf("that may suffice in covering the given space? If so. ENTER\n");
printf("the number here, OTHERWISE ENTER the number zero (0)--
scanf("%d". &k); printf("\n\n");
if (k=-Q 11 k>ns-2) kstrt-ns/2; else kstrt=k;
JJ-kstrt; temp-0;
for ( Ju0; J<kstrt; j++) /*first left-point and corresponding subset*/

{ subset~jJ-1; temp=2*temp+l; )
for ( J=kstrt; j<ns; j++) subset[j]-Q;
ptvalueo; value[0]=newval; pnt[O]=temp; tempv=newval;
for (i-0; i<5; i++)

for (j=O; J<ns; J++) aresult~i](j]=cresult[i][jl;
for ( J=O; j<(ns-kstrt); j++) subset[j]=0; /* first right-point and*/
for ( J=(ns-kstrt); J<ns; j++) subset~j]=1; /*corresponding subset*/
for ( j-kstrt; J~cns; J-H.) temp *- 2;
ptvaluefl; value[2]=newval; pnt[2J-temp;
if (newval<tempv)

{tempv-newval;
for (i-0; i<5; i++)

for (J-0; j<ns; j++) aresult~ii(j]-cresult~i](j];

pnt(11=(pnt[0]+pnt[2 I); binen(pnt(1]);
ptvalue (; value 1] -newval;
for (i-0; i<5; i++)

for (j-0; j<ns; J++) resultl~i][j]-cresult[i][j];

/* computes the next point and corresponding subset ~
void nextpt(void)
{ mt pO, p1, p2;
pO=pnt[Z]; pl=pntflJ; p2-pnt[2];
if (pi-pO >= p2-pt)

{if (p! > p0 + 1) {newpt -(pl+pO)/2; gap=1;}
else gap -0;

if (p1-pG < p2-pt)
{if (p2 > pi + 1) {newpt - (pl+p2)/2; gap=2;}
else gap=O;

binen(newpt);

1------------------ ----------- *
/* updates points and their values ~
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void update(void)
{irit i. J;
if (newval < value[1])

{for (i-0; i<5; i++)
for (J-0; J<ns; J++) resultl[i][J]-cresultlIi]J;

if (gap--i)
{value [2] -valuc [1]; value [1]-newval;
pnt[21-pnt[l]; pnt[1]-newpt;

if (gap=-2)
(value[O]-value~l]; value[llznewval;
pnt[O]-pnt(1]; pnt(1]=newpt;

else
{if (gap--i)
{ value[O]-newval; pnt[0]=newpt;

if (gap--2)
{value[2]=newval; pnt[2]=newpt;

/* -------------------------- *
/* does a binary enumeration *
void binen(int p)
{ int xx, J;

* xx-p;
for (J=O; J<ns; J++) subset[j]=0;

while ( xx >l1&& j <ns)
j subset(j] - xx%2;

xx = (xx-(xx%2))/2; j+1l;

subset[ J-1
I

1* ---------------------- *

/* restarts the line search iterations *
void restart(void)

int i, j, k, p, p1. temp. flag;
if (value[11.ctempv)

(tempv-value[1];
for (i-0; i<5; i++)

for (j=O; jcns; j-i.+) aresult.(i][j]-resultl~i]lj];

if (jj--ns-1)
{for (j=O; Jcfls; J++)

{ subset[j]-1; p-(2*p) + 1;}
ptvalue H;
if (newval < tempv)

{teiupv - newval;
for (i-0; i<S; i++)

for (J-0; jcns; j++) aresultfil~j]=cresulti](iJ;

if (jjcns-1)
{p-0;
for ( J-OG; j<jj+l; J++) /* left-point and corresponding subset*/
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{subset[J]-1; p-2*p4.1; I
for ( J'mjj+i; Jcns; J++) subset[JIu'0;

ptvalueo; value(Ol-newval; pnt[0]'up; tempv-'newval;
for (i-n0; i<5; i++-.)

for (J-0; Jcns; J++) aresultliflj]-cresult[i][j];
for ( J-0G; J<(ns-(Jj+l)); J++) subset[JI-0; /* right-point and *
for ( J-(ns-(Jj.)); Jcns; J++) subset[JIul; /*corresponding subset*/
for ( J-Jj+l; Jcns; J++) p *- 2;
ptvaluefl; value(2]-newval; pnt(2]-p;
if (newval<tempv)

{tempv-newval;
for (i-0; i<5; i++)

for (j-0; J<ns; J++) aresult~i][jl-cresult[i][j];

pnt[l1 ](pnt[O]+pnt[2 ) /2; binen(pnt[ 1]);
ptvaluefl; value(1]-newval;
for (i-0; i<S; i++)

for (juG; jcns; j++i) result1[iJ(j]-cresult~i1[j];

/*----------------------------- *
/* prints the output on the screen ~
void output(void)
I int i. J;
char fn[4];
if (objflag==l)

I fn[G]-'C'; fnl1]-'O'; fn[2]='S'; fn[3]='T'; I
if (objflag--2)

{fri[O]-'T'; fn[1]='I'; fn[2]-'M'; fn[3]-'E';
if (tempv < value[1]

(value[1]-teupv;
for (i-0; i<S; i++)
for (j-0; Jcns; J++) resultl~i][j]-aresult[i][j];

printf(" OUTPUT STATEHENT~n');
printf ( ___ ___ ___ ___ __

printf(" Input FILE's name is '%s' \n~n~n*. fname);
printf(w Corresponding to %c%c%c%c value of %5.2f, the following\n'.

printf(" table gives details of recommended surveillance sensor\n");
printf(" mechanism deployments\n\n");
printf(" n")
printf( "Sensor\tRadius\t\tLocation\t\tCost\t\tTime\n\n");
for (J-0; jcns; j++)

{if ( resultl[4](j] > -1
printf(" %d\t%5.2f\t (%5.2f. %5.2f. %5.2f)\t %4.2f\t %5.2f\n".

j+1, sensor[0][j]. resultl[O][j], resultl(l][j], resultl(2][j],
resultl[31[j], resultl[4](j]);

/*--------------------------------------- ---------------- *
/checks whether the given space may be covered by a given

I* set of sensor mechanisms. and, if so, computes the 'value' ~
/* of the cover relative to given objective function '
void select(void);
void sort(void);
void xyz(void);
void check%'void);
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int p. quit;
irit pointer(LIMJ, slct[LIM]. part[LIHI;
float X. y. z, costime[LIH];
void ptvalue(void)
{ mt J. count; /* selects deployment *

countnG;
while (count < CHANCES)

{for (J-0O; J<ns; J++)
{cresultC0]CJl-0; cresuit~il](j]0O; cresult[23 (I hO;
cresult[3][jJ-0; cresult[4] (j]--2; part[J 3.0;

selectfl; sort(); p-i; quit=O; riewval-0;
while ( p, < piecesa- && quit -- 0)

{xyz(); checkfl;
if (quit -m 0) p-a--;

if (quit ==0) count-CANCESa-; 1* a cover found *

else count+-i;

if (quit--i) /* not a cover ~
{newval=BIG;
for (J=O; J<ns; J-a+)

{cresult[O][(J]=0; cresult[i](jJ=O; cresult[2] [j =0;
cresult[33(j 1-0; cresult[4] fi ]-2;

1* -------- -------- -~-------- ~-------- ~----------------------.
/* selects a deployment of a given set of sensor mechanisms *
void select(void)
I int J. r. num;'

for (J-0; Jcns; J-a+)
{num-seed*7; r-sensor~lJ[j];
slct~j]-(subset~l3)*(num%r); seed--;

/* sorts deployed sensor mechanisms by costs or by time
void sort(void)
{ mt i. J. k, col, tetupi. count;
float temp;
if (objflag-i) k-3; else k-n4;
/* copying into costime *I i-0;
for (j-0; jcns; j+-a)

{if (subset[j]==i)
{colmindexj]aslct~l];
costime~iJmdeploy~k](col];
pointer[i]-J; i+1l;

/* sorting */ count-jj;
while (count>0)

{for (i-0; i<count; i++9)
{if (costimefihcostime~i+il)

(temp-costiiue~i]; costime(i-costime~i-l];
costimefia-i-temp; templ'pointer(i];
pointerfil-pointeria-i; pointerli+11h tempi;
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count- 1;

I.......................................................-
1* computes the origin of the piece corresponding to p ~

void xyz(void)

int num, a, b. c. temp;
nuui-p-1; temp - *wJ;
c - num/temp; num %- temp;
b - num/l; a - nurn%l;
temp=space[3]; x=.a*temp; y=b*temp; zc*temp;

I---------- --------- *
/ * verifies that the point (xyz) is covered *
void check(void)

{float a. b. c, r. sa. sb, sc, sr;
int i, j. col. flag;
flag-0; iam0;I while (flag==e && i<jj)

{J-pointer[i]; col-index~j] + slct~j];
r-sensor[O][j]; a=deploy[O][col];I b-deploy[i](colJ; c=deploy[21[col];
sr=r*r; sa=(a-x)*(a-x); sb-(b-y)*(b-y); sc=(c-z)*(c-z);
if ((sa+sb+sc) <- sr)

{ flag=i; cresult[0][j]=a; cresult[i][jJ-b;I cresult[2][J]=c; cresult[3] [j]-deploy(31(col];
cresult[4][j]-deploy[4][col];.
if (part[ fl-me)

{if (obiflag=-1) newval+-cresult[3][j];

part~j Jal;

if (flag--O) quit-1;
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/* A GENERALISED SET-COVERING PROCEDURE FOR SURVEILLANCE MAINTENANCE o
void datafls(void);
void searchl(void);
void uain(void)

char choice;
menu:
printf("\n\n MAIN MENU \n\n");
printf(" ___ __ __ __ __ __ __ __ __ __ __

printf(" SELECT \n\n\n");
printf(* A -- To Create or View a Data File\n\n");
printf(0  B -- To Run this Space-covering Procedure\n");
printf(" on an Existing Data File\n\n");
printf(" C -- To Quit and Return to System\n\n\n");
printf(" YOUR SELECTION -- ';choice-getcheo;

printf ("\n\n");
switch( choice)

f
case 'a'
case 'A':
datafiso; printf("\n\nPress ENTER to continue\n\n\n");
getcho; goto menu;

case 'b':
case 'B's

searchl(); printf("\n\nPress ENTER to continue\n\n\n");
getcho; goto menu;

case 'c':
case 'C's

exit(O);
default:

goto menu;

void w-data(void);
void v-data(void);
void datafls(vold)

f
char choice;
menult
printf("\n\a MENU FOR DATA FILES\n");
printf(" \n\n");
printf(" SELECT\n\n");
printf(" 1 -- To Create a New File\n\n");
printf(" 2 -- To View an Existing File\n\n");
printf(V 3 -- To Return to MAIN Menu\n\n");
printf(" YOUR SELECTION -- ';choice-getcheo;

printf(*\n\n");
switch( choice)

f
case '1':
w datao; printf("\n\nPress ENTER to continue\n\n\n');
getcho; goto menul;

case '2't
v dataoj; printf(a'\n\riPress ENTER to continue\n\n\n");
getcho; goto menul;

case '3's
return;

defaults



goto menul;

#define LIM 20
#define RIM 80
#include wmalloc.h"
#include "stdlib.h'
#include 'stdio.h"
int space[5];
float sensor[2][LIHJ;
float deploy[5][RIM];
void spc(void);
void snsr(void);
void dply(void);
FILE *fptr, *fptrl, *fptr2;
char fname[6]. fnamel[71. fname2[7];
void w-data(void)

int J;
printf( \nn)
printf("The set of data that you are about to enter will form\n");
printf("a FILE. You are required to give a NAME to this file.\n\n");
pzintf("You may not use more than 6 characters for the file\n");
printf( "name. \n");
printf(" nn")
printf("Please give the FILE NAME - no more than 6 characters--
fflush(stdin); scanf("%s", fname); printf("\n\n");
fnamel[0]-'s'; fname2[0]-'d';
for (J-0; J<6; J++)

fnamellj+l]-fname[j]; fname2[j+l]-fname~j];
I

spco; snsr(); dplyfl;

/* information on space under surveillance*/
void spc(void)

int J, k;
printf(" n")
printf(" You will be asked to provide information about the\n");
printf(w space, S, under surveillance, and the potential intruder's\n");
printf(" size. We shall assume that S is a rectangular volume \n");
printf(" located at the origin.(0.0,0). of the 3-dimensional space.\n");
printf ("\n")
printf("Please give LENGTH. WIDTH, HEIGHT of S, lzwth--
fflush(stdin);
scanf("%ds%d:%dw, &space[Ol. &space~l]. &space[23);
printf( "\n\n");
printf("Please give SIZE OF POTENTIAL INTRUDER-- )

fflush(stdin);
scanf("%d". &space(31); printf(o\n\nh)
printf("Please give TOTAL NUMBER OF AVAILABLE \n");
printf(*SURVEILLANCE SENSOR MECHANISMS -- > "); fflush(stdin);
scanf(*%d", &space(4]); prlintf("\n\n\n\n");
if ((fptr - fopen(fname. "wb"))--NULL)

{printf("Can't open %s n", fname); exito; I
fvrite(space. sizeof(space , 1. fptr);
fclose(fptr);



l' DATA ON SENSORS: SPAN RADIUS. AND DEPLOYMENT OPTIONS-/
void snsr(void)

mnt J;
printf(" n*)I printf("You will next supply information about the coverage \n");
printf("of each sensor mechanism -- the span, and the number of\n");
printf("possible positioning or deployment of each sensor \n"W);I printf("mechanism. Each sensor mechanism 'covers' a sphere\n");
printf("whose centroid will play the role of deployment location.\n");
printf(" nn")
for (J-0; J<space[4]; J++)

printf("Please give the COVERAGE RADIUS of sensor mechanism\n");
printf("number %d -- > ". J+l); fflush(stdin);
scanf("%f". &sensor(0][j]); printf("\n\n");
printf("Please give the NUMBER OF POSSIBLE DEPLOYMENTS \n");
printf("of sensor mechanism number %d -- > ", J+1); fflush(stdin);
scanf("%f", &sensor[1J[j]); printf("\n\n");
I

if ((fptrl - fopen(fnamel, "wb"))--NULL)
{printf("Can't open %s\n", fnamel); exitfl;}

fwrite(sensor, sizeof(sensor), 1. fptrl);
fclose(fptrl);

/*DATA ABOUT DEPLOYMENT OPTIONS*/
void dply(void)

int J. k, m;
printf (" n")
printf("You will next supply information concerning deployment\n");
printf("locations. deployment costs, and the amount of time \n");
printf("needed to complete each deployment as a task, that\n");
printf("is, the amount of time needed to move each sensor\n");
printf("uiechanism from current location to deployment location.\n");
printf(" nnm;
a-0;
for (J-0; J<space[4]; J+4-)

for (k-0G; k<sensorfl][j]; k-H-)
f
printf("Please give the DEPLOYMENT LOCATION,. x,y,z of the \n");
printf("%d th deployment of sensor mechanism %d -- ,k+1. j4-1);
fflush(stdin);
scanf("%f.%f.%f". &deploy[0][m], &deploy[1][m], &deploy[2][mJ);
printf("\nn");
printf("Please give the COST and DEPLOYMENT TASK TIME, cit. \n");

* printf("of the %d th deployment of sensor mechanism %d ->"

k+1, J+1); fflush(stdin);
scanf("%f:%f", &deplc,'(31(m], &deploy[4][m]); printf("\n\n");

if ((fptr2 - fopen(fnamr2. 'wb"))--NULL)
{printf("Can't open ile please"); exito;

fwrite(deploy, sizeof(de loy . 1, fptr2);
fclose(tptr2);

/* 0@0@000@@@QQ@@@@@@@@@@ )@@@@6@@@@@Q@@66@66@6@@@@@0@6@6@@@@@@



void v-data(void)

nt J. k. m;
printf(w \n\n");
printf(*The set of data that you are about to view exists as\no);
printf~wa FILE. You are required to give the NAME of this file.\n\n");
printf("You may not use more than 6 characters for this file\n");
printf ("name. \n");
printf(" nn")
printf("Please give the FILE NAME - no more than 6 characters -")

fflush(stdin); scanf("%s", fname); printf("\n\n");
fnamel[e]-'s'; fname2[0]-'d';
for (J-0; J<6; J++)

fnamel~j+l]-fname[j]; fname2[j+1]-fname~j];

fptr-fopen(fname. "rb");
fread(space. sizeof(space), 1, fptr);
fclose(fptr);
printf("%s DATA ABOUT SPACE, S, UNDER SURVEILLANCE\n". fname);
printf("___________________________
printf("Dimensionss %d, %d, %d\n\n", space(e], spaceil], space[2]);
printf("Size of potential intruder: %d\n\n\n", space[3]);
printf("Press any key to continue file viewing\n\n\n");
getcho;
printf("%s DATA ABOUT AVAILABLE SENSOR HECHANISHS\n", f name);
printf(n__________________________
fptrl-fopen(fnamel. "rb");
fread(sensor. sizeof(sensor), 1, fptrl);
fclose (fptrl);
printf("Number of sensor mechanisms: %d\n\n", space[4j);
printf("sensor mechanism radius of span deployment options\n");
for (J-0; J<space[41; J++)
printf("\t%d\t\t%f\t\t%f\n", J+1, sensor[e][j], sensorjjl][j]);

printf("\n\n\nw);
printf("Press any key to continue file viewing\n\n\n"); getcho;
printf("%s DATA ABOUT DEPLOYMENT OPTIONS\n", fname);
printf(" __ _ _ __ _ _ __ _ _ __ _ _ __ _ _

fptr2-fopen(fname2, "rb1");
fread(deploy. sizeof(deploy), 1, fptr2);
fclose(fptr2); m-0;
for (J-0; J<st'..ce[41; J++)
for (k-0; kcsensor[l][j]; k++)

printf(o<--DEPLOYMENT OPTION %d of sensor mechanism %d-->\n\n". k+1, J+1);
printf("Location: ( %f, %f, %f )\n\n". deploy[0J[m], deploy[1]jm],

deploy[2J [m]);

printf("Deployment task times %f\n\n\n", deploy[4][m]); m+-1;
printf("Press any key to continue file viewing\n\n\nm); getcho;

P/* discrete line search heuristic main driver*/
#def in. CHANCES 1
*define BIG 50,00
#define LIM 20
#define RIH 80
#iniclude mnalloc.h"



#include "stdio.h'
void setup(void);
void nextpt(void);
void ptvalue(void);
void upd ate~vvoid);I' functions *
void rextart(void);
void output(void);
void binen~int);
mnt probe(int, nt, mnt. int); /* global variables *
mnt space[5];
float sensor[2J[LIM]. deploy[5J[RIH];
mnt subset[LIH]. index[LlM];
mnt ns, kstrt, 11, obiflag;
mnt pnt[31, newpt. gap;
float value[3]. newval. tempv;
float resultl[5][LIM]. aresult[5][LIHJ, cresult[5][LIH];
mnt 1, w. h. pieces. seed;
char fname[61. fnamel(71, fnamue2[7];
void searchl(void) /* beginning *

FILE *fptr, fptrl, *fptr2;
mnt J1;
printf(" n")I. printf("The set of data for this procedure exists as a DATA\n");
printf(mFILE. You are required to give the NAME of this file.\n\n");

printf("You may not use more than 6 charActers for this file\n");
printf("nm.n)

printf("Please give the FILE NAME - no more than 6 characters--
fflush(stdin); scanf("%sm, fname); printf("\n\n");
fnamel[0]-'s'; fname2[0]-'d';
for (J-0; J<6; J++)

fnamel[j-i-]-fname(j]; nm2jlfaej]

fptr-fopen(fname, "rb");I. fread(sy ce, sizeof(space), 1, fptr); fclose(fptr);
fptrl-f, en(fnamel, wrbtm);
fread(sL~nsor, sizeof(sensor), 1. fptri); fclose(fptrl);
ftr2-fopen(fname2, "rb");
fraddply sizeof(deploy). 1, fptr2); fclose(fptz2);
setup();

for jj- kstrt; jj < ns; jj++
for (ji ; I. see flow chart *

while ( gap 1- 0
{ ptvalueoi; updateo; nextpt(); I

restarto(;

outputU;

/* ----- a~-------------------- /I * initiates the line search iterations ~
void setup(void)

int i. J. k. temp. tempi, sum;
1-space[(J/space[31 + 1;
wspace(l]/space[3] + 1;

h-space[2]/space[3] + 1; pi cesmlw~h; seed-3*kstrt+l; /* random seed *

n-spaceC41; sum-0;



for (J-01 jcns; J++)
f index[j]-sum; temp-sensor[1J[j]; sum+-temp; I

printf("Please SELECT an objective for this surveillance problem\n\n");
printf(" 1 -- To Minimise Maintenance Costs\n\n");
printf(" 2 -- To Minimise Maintenance Task Time\n\n");
printf(" YOUR SELECTION -- > ");
scanf("%d". &objflag); printf("\n\n");
printf(WNould you guess the number of surveillance sensor mechanisius\nw);
printf(wthat may suffice in covering the given space? If so, ENTER\n");
printf("the number here, OTHERWISE ENTER the number zero (0)-- )
scanf("%dm, &k); printf("\n\n");
if (k-mO 11 k'ns-2) kstrt-ns/2; else kstrt-k;
jj-kstrt; tempin0;
for ( J-0; j<kstrt; J++) /*first left-point and corresponding subset*/

I subset[jJI-1; temp-2*temp+1; I
for ( J-kstrt; Jcns; J++e) subset[j]-O;
ptvalue(); value[O]-newval; pntio]-temp; tempv-newval;
for (i-0; i<5; i++)

for (J-0; J~ns; J++) aresult~i][j)-cresult[iJ(jJ;
for ( J-0; J<(ns-kstrt); j+--) subset[j]-0; /* first right-point and*/
for ( J-(ns-kstrt); Jns; J++) subsetijimi; /*corresponding subset*/
for ( j-kstrt; jcns; J++) temp *- 2;
ptvalueoe; value[21-newval; pnt[2]-temp;
if (newvalctempv)

{tempvu'newval;
for ,(i-0; i<5; i+i+)

for (J-0; j~ns; j++) aresult~i][j]-cresult[i][j];

pntll]-(pnt[O]+pnt[2])/2; binen(pnt[iJ); sum-0;
for (J-0; Jcns; J++) sumi4-subset[j]; j-0.'
while(sum~jj)

I sum+-l-subset[j]; subset[j]-l; J+in1; I
while (sum>j j)

I sum--subset[j]; subset[j]-0; J+-1; I
ptvalue(); value[1i-newval;
for (i-0; i<5; i++)

for (J-0; j~ns; J++) resultl[i][jJ-cresult[i][j];

/* --------------------- ---------- -----------------------------------

/* computes the next point and corresponding subset ~
void nextpt(void)
{ mt pO. pl. p2. J. sum;
pO-pnt(0]; pl-pnt(1]; p2-pnt[2];
if (p1-pG >- p2-pi)

{if (p1 > pG + 1) ( newpt - (pl+pO)/2; gap-i;}
else gap - 0;

if (p1-pG < p2-pi)
{if (p2 > p1 + 1) { newpt - (pl+p2)/2; gap-2;}
else gapinG;

binen(newpt); sum-0;
for (J-0; Jcns; J++) sum+-subsetfj]; J-0;
while (sumcj j)

( sum+-l-subset~j]; subset[j]-1; J+-1;
while(sum~jj)

{sum--subset(j]; subset(JI-0; J+-1; I



/* --- -- -- -

I* updates points and their values *

void update(void)
{ mt i. J;
if (newval < valueli]

{for (i-0; i<cSa i++)
for (J-0; J<ns; J++) resultl[i][jJ-cresult[i]Jj];

if (gap--i)
{value[21-valuelll; valueEll-newval;
pnt[2]-pnt(iI; pnt(1J-newpt;

if (gap--2)
{value[O]-value[i]; valueliJ-newval;
pnt(0]-pnt[l]; pnt(l]-newpt;

else
{if (gap--i)

{ value(0J-newval; pnt[GJ-newpt; )
if (gap--2)
I value[2]-newval; pnt[2]-newpt; )

I* does a binary enumeration *

void binen(int p)m it xx. J;
XX-p;,

for (J-0; Jcns; J++) subset[I]-0;

while ( xx > 1 && j < ns)
{subset(j] - xx%2;
xx - (xx-(xx%2))/2; J+-1i;

subset[j]-l;

/restarts the line search iterations *

void restart(void)

int i, .Jke p. p1, temp, flag. sum;
if (value[ij<tempv) /* save current best value '

{tempv-value[iI;
for (i-0; i<c5; i++)

Ifor (J-0; J~ns; J++) aresult~i][JI-resultli]lj];

if (JJ--ns-1) /* if full set is to picked up nextI {for (J-O.; Jcns;- J++)
( subset[jJ-1; pm(2*p) + 1 I

ptvalueoC;I if (newval < teiupv)
{tempv - newval;
for (i-0; i<5; i++)

for (J-0; Jcns; i++) aresult(i](j]-cresult~i][j];

if (jj~cns-1)



{P-0;
for J-0rn; i'JJ+1; J++) /* left-point and corresponding subset*/Psubset[jJml; p-2*p+1; I
!.or ( j-jj+l; Jcns; J4..) subset[jJ-0;

ptvalue(); value[O]-newval; pnt[G]-p; tempv-newval;
for (i-0G; i<5; i4.+)

for (ir-0; Jcns; J++) aresult~i][1Imcresultli](j);
for ( J-0; J<(ns-(Jj+l)); j++) subset[j]-O; /* right-point andfor ( J-(ns-(Jj+l)); Jcns; J++) subset[j]nl; /*corresponding subset*/
for ( J-jj+i; j~ns; J++) p *- 2;
pnt[2]-p; ptvalue(); value[2]-newval;
if (newval~ctempv)

{tempv-newval;
for (i-0; i<5; i++)

for (j-0; J~cns; J+-I) aresult[i][jj-cresult[i][j];

pnt[1]m'(pnt[O]+pnt[21)/2; binen(pnt[l]); sum-0;
for (J-e; j<ns; J++) sum+-subset[j]; Jin0;
while (sumcj j+l)

( sum+in1-subset~j]; subset(j]-l; J+-1; I
while (sum>j j+1)

{ sum--subset[jJ; subset[j]-e; J+-1; I
ptvalueo(; value 1 1] newval;
for (i-0G; i<c5; i4-+)

for (J-0; Jcns; J++) resultlli][jjsmcresult[.i][j];

1* ---..................--

/* prints the output on the screen ~
void output(void)
{ mt i. J;
char fn[43;
if (obJflagm-1)

f fn[0]-'C'; fn[lJ-'O'; fn[2]-'S'; fn[3].'T';}
if (objflag--2)
{ fn[0J-'T'; fn[l]-'I'; fn[21-'H'; fn[3)-'E';

if Itempv <valuefi)
{value[l]-tempv;
for (i-0; i<5; i++)
for (J-0; Jcns; J++) resultl[i][JI-aresult[i]J[j.;

printf(" OUTPUT STATEHENT\n");
printf( _________\n\n\n");
printf(* Input FILE's name is '%s' \n\n\n", fname);
printf(u Corresponding to %ctc%c%c value of %5.2f, the following\n".

fn(01,fn[1], fn(21, fn[3], valuel);
printf(" table gives details of recommended surveillance sensor\n");printf(" mechanism deployments\n\n");
printf (" 

n")printf("Sensor\tRadius\t\tLocation\t\tCost\t\tTime\n\n".);
for (J-n0; J~cns; J4...)

{if ( resultl[41[jJ > -1
printf(- %d\t%5.2f\t (%5.2f, %5.2f, %5.2f)\t %4.2f\t %5.2f\n".

J+1, sensor(0j[j], resultl[0J[jJ, resultl[1][jJ. resultl(21[jJ,

/nnnnnnn-- -----.--------------- -------- -- *
/checks whether the give, space may be covered by a given ~



/* set of sensor mechanisms, and. if so, computes the 'value' */
/* of the cover relative to given objective function
void select(void);
void sort(void);
void xyz(void);
void check(void);
int p, quit;
int pointer[LIM], slct[LIH], part[LIM];
float x. y, z, costime[LIH];
void ptvalue(void)

{ int J. count; /* selects deployment */
count-0;
while (count < CHANCES)

{ for (J-0; J<ns; J++)
{ cresult[O][j]-O; cresult[i](j]-O; cresult[2][JI-O;
cresult[3][J]-O; cresult[4][J]--2; part[J]-O;

I
select); sort(; p-1; quit-0; newval-0;
while ( p < pieces+l && quit -- 0 )

{ xyz(; check();
if (quit -- 0) p+-i;I

if (quit -- 0) count-CHANCES+l; /* a cover found */
else count+-i;I

if (quit--1) /* not a cover */
{ newval-BIG;

for (J-O; J<ns; J++)
{ cresult[O][J]-O; cresult[l][J]-O; cresult[2]1J]-O;
cresult[3][j]-O; cresult[4][j]--2;

I

/* ---------------------------------------- * /-------

/* selects a deployment of a given set of sensor mechanisms */
void select(void)
I tnt J. r, nun;

for (J-O; J<ns; J++)
{ num-seed*7; r-sensor[l](j];
slct[jI-(subset[j])*(num%r); seed+-i;)

}

*--aaaa---------aaa -----a~---------------------*

/* sorts deployed sensor mechanisms by costs or by time '1
void sort(void)

{ int i, J. k, col, tempi, count;
float temp;
if (objflag--i) k-3; else k-4;
/* copying into costime */ i-0;
for (J-0; J<ns; J +)

{ if (subset[j=--i)
{ col-index(j]+slct[j];
costime[iJ-deploy(k](col];
pointer[il-j; i+-i;

/* sorting */ count-JJ;
while (count>O)



{for (i-0; i~count; i4.+)
{if (costime~iJ,.costimeji+1j)

{teup-costimelil; costime(i]-costiueli+i];
costitue(i+i]-tenp; tempi-pointer~il;
pointer~i]-pointer[i-i]; pointer~i~iJ- tempi;

count--i;

P~ computes the origin of the piece corresponding to p ~
void xyz(void)

int num. a. b, c. temp;
numu-p-1; temp - 1*w;
c - num/temp; nuui %- temp;
b - num/l; a - num%l;
temp-space[3]; x-a*teup; y-btemp; z-c*temp;

----------------------------------~--*/
/* verifies that the point (x,y~z) is covered *
void check(void)

{float a, b. c. r. sa, sb. sc, sr;
mnt i, j. col. flag;
flag-0; i-0;
while (flag--O && icjfj)

{J-pointer[i]; col-index(j] + slct[j];
r-sensor[0](j]; a-deploy(O][coll;
b-deploy(l][coll; c-deploy[2][col];I sr-r*r; sa-(a-x)*(a-~x); sb-(b-y)*(b-y); sc-(c-z)*(c-z);
if ((sa+sb+sc) <- sr)

f flag-i; cresult[OSJI-a; cresult(l)[j]-b;I. cresult[2][jJ-c; cresult[3J [1]-deploy[3] [coil;
cresult[41 U l-depioy[41 [coil;
if (part[J--O)

{if (obiflag-mi) newval+-cresult[3](jl;
if (obJflag--2 && newvailccresult[41(j])

newval-cresult[4] [11;
part[JI1;

if (flag-me) quit-i;



APPENDIX IV

TEST PROBLEMS
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